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The convergence of Lardy’s series representation of the Moore—Penrose inverse of
a closed unbounded linear operator is proved via Dykstra’s alternating projection
algorithm. © 2002 Elsevier Science (USA)

1. INTRODUCTION

In [3] Lardy used spectral techniques to prove the convergence of a series
representation of the Moore—Penrose inverse of a closed linear operator 4
that is defined on a dense subspace Z(4) of a Hilbert space H, and takes
values in a Hilbert space H>. (In this discussion the symbols {-,->, || - ||, and 7
are used indiscriminately to denote the inner product, norm, and identity
operator, respectively, in either Hilbert space.) The Moore—Penrose inverse
of 4 is the operator 4" defined on the dense subspace Z(4") = R(4) + R(4)*
of H, which maps y € Z(4") to the unique vector x = ATy € 9(4) N N(4)*
satisfying Ax = Py, where P is the orthogonal projector of H> onto R(4), the
closure of the range of 4 (N(4) is the nullspace of 4). In particular, Z(4")
consists of those y € H, for which Py € R(4). The vectors x € Z(A) satisfying
Ax = Py are called least-squares solutions of the equation Az = y since any
such least-squares solution x satisfies ||[4x — y||<||4z — || for any z € Z(A).
Therefore, y € 2(4") if and only if the equation 4z = y has least-squares
solutions and 4"y is that least-squares solution having smallest norm. It is
well known that AT : 2(4%) » H; is itself a closed densely defined linear
operator which is bounded if and only if R(4) is closed.
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Lardy’s series representation of the Moore—Penrose inverse makes use of
the remarkable theorem of von Neumann (see [4]) which asserts that the
linear operators

A= +44%)7",  A=I+4%4)",  A*4A and A4

are each bounded linear operators that are defined everywhere on the
appropriate Hilbert spaces. Lardy’s theorem asserts that

= ok
Ay=> 4*dy (1)
k=1

for each y e 2(4"). As an alternative to his spectral theory approach, we
apply Dykstra’s algorithm (see [1, p. 207]) to prove the convergence of this
representation of the Moore—Penrose inverse. Our line of argument is this:
the series representation is converted into an iterative method; the iterative
method is characterized as a multi-stage optimization procedure; and the
optimization procedure is interpreted as alternately projecting onto two
closed affine subsets of a product Hilbert space. The validity of
representation (1) is then an immediate consequence of the convergence of
Dykstra’s algorithm.

2. AN ITERATIVE METHOD

We begin by proving a simple identity that relates the bounded operators
A*A, A and A (see also [2, Lemma 2.2]).

LEMMA. (4*A)A = A(4*A).

Proof. Note the operators indicated in theAs‘Eatement of the lemma are
defined everywhere. Given y € Hy, let z = A*AAy, and note that z € Z(4)
since R(A) < 9(AA*). We then have

Az = (=] + 1+ AA*)AAy = —AAy + Ay

and hence, since the right-hand side is in Z(44%*) < 2(4*), Az € 2(4*), and
further

(I + A*A)z = A*AAy — A*AAy + A*Ay.

Therefore, z = AA*Ay.
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Let xo =0 and x, = > _, A*/fky. Then, by the lemma,

xpp = A*Ay + > a*Ad'y = a* Ay + Ax, )
k=1

and hence the partial sums of the series representation (1) satisfy iterative
relation (2).
The iterate x,; is characterized as follows:

ProposITION 1. Let xg = 0. Then x,| is the unique solution z € Z(A4) of
the equation

A*(Az — y) +z = x,, n=0,1,2,... .
Proof. Since R(A) = 9(4*4) and R(A) = Z(44*), we see that

Xpp1 = A*Ay + Ax, € D(A).

Also,
Axyi = AA*Ay + AAx, = —Ay + y + AAx,.
Therefore,
Axyi1 — y = —Ay + AAx, € U(4*)
and

A*(Axy1 — y) = —A*Ay + A*AAx, = —A*Ay — Ax, + xp = —Xni1 + Xn,
that is,
A*(Axn+1 - y) + Xpr1 = Xp.

If 21,2, € 9(A) satisfy the equation of the proposition, then w = z; — z,
satisfies 4¥*Aw + w = 0 and hence w = 0 since (I + A*4) is invertible. 1

3. MULTI-STAGE OPTIMIZATION

The iterative process of the previous section may be viewed as a multi-
stage optimization procedure in the product Hilbert space # = H| x H,
(endowed with the usual product norm and inner product). Since 4 is a
closed linear operator, the graph

G = {(x,Ax): x € D(A)}
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is a closed subspace of #. Given a vector (x,, y) € #, let (x,41,A4x,+1) be the
metric projection (in ) of (x,, y) onto 4. The vector x, is then the unique
vector z in 2(A4) that minimizes the quantity

llz = xal* + 14z — yI?
and hence
{Axpi1 — y, Auy = Xy — Xpy1,u)
for all u € 2(A). Therefore, Ax,,1 — y € 2(4*) and
A*(Axp1 = ) = Xp = Xnp1. 3)

The result of the previous section therefore characterizes the iterates
which form the partial sums of the series representation (1) as the unique
solutions of the multi-stage optimization process

X1 = argmin{|ldz — P + 2 — x| z € 2(4)}. @)

4. DYKSTRA’S ALGORITHM APPLIED

Let K; = H; x {Py}, where P is the orthogonal projector of H, onto R(4),
and let K; = 9, the graph of 4. Then K| and K, are closed affine subsets of
A and K| N K, #0, if and only if there is a x € Z(4) with Ax = Py, that is, if
and only if y € 2(4"). To put it another way,

K] ﬂKz = Ly X {Py},
where L, is the set of least-squares solutions of the equation 4z = y.

PROPOSITION 2. If y e Z(A"), then x, — A"y, as n — oo, where {x,} is
defined by (4) (equivalently (3) or (2)).

Proof. Let P be the metric projection of # onto K;, i = 1,2. Note that
since

14z — Yl = |4z — Pyl|,

P(u,v) = P5(u, Pv) for any (u, v) € . The variational characterization (4) of
X1 gives

(x1,4x1) = P(0, y) = P»(0, Py) = P,P((0, y).
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Also, Pi(x1,A4x;) = (x1, Py) and hence,
PPy (x1,Ax1) = Py(x1, Py) = Py(x1, y) = (x2,A4x2)
and, in general,
(e, Axy) = (P2P1)"(0, y) 5
and hence, by Dykstra’s theorem ([1, p. 216]),
(xn, Axn) = Px,~x,(0, ») as n — 00,

where Py, ~k, 18 the metric projector of # onto L, x {Py}. In particular,
x, — x where x is the least-squares solution nearest to 0. In other words,
x = A"y, the least-squares solution of smallest norm. 1§

Representation (1) of the Moore—Penrose inverse requires that iterative
method (2) starts at xo = 0. However, iterative method (2) is well-defined for
an arbitrary initial approximation x,. In the case of an arbitrary xy, process
(5) becomes

(xu, Ax) = (P2P))" (x0, V), n=1273,....

As above, Dykstra’s result assures that x, converges to the least-squares
solution x which is nearest to the initial approximation xy. A priori
information on the desired least-squares solution, in the form of xy, may
therefore be allowed to influence the particular least-squares solution to
which the Dykstra algorithm converges.

The formulation of iterative method (2) in terms of Dykstra’s algor-
ithm in the product space ## also provides a justification of the regularity
(in the sense of Tikhonov and Arsenin [5]) of the method. Suppose
that, instead of the exact data ye 2(4"), only an approximation
y’ € H, is available satisfying ||y — »°||<J. Suppose x° is defined by

n

(2) using »° instead of y (and x)=xp). Also, let K} =H, x {P)°}

where, as before, P is the orthogonal projector of H, onto R(4). We then
have

(0, Ax0) = (PP, Ax 1) = (PaP))"(x0, ),

where P is the metric projector of # onto K{. Finally, let |- | be the norm
on J, that is,

(@, 0)F = llll® + lel* for  (u,v) € #.
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One then has

Iy — xall* <1065, Ax)) — (e, A,

= P {P)(x°_ |, AX] ) — Pi(xn—1, AXp_1)}

n—1°

<IPIOS 1, AX ) — Pi(x—1, Ax, 1)

n—1°
= (_1, Py°) — (xa1, PY)

2
< = x|+ 02

Since x{ = xo, it follows that ||lx0 —x,||<./nd. Combining this with the
previous proposition we arrive at:

PROPOSITION 3.  Suppose y € Z(A%) and ||y — y°|| <. If n = n(d) satisfies
n(d) — oo and \/n(6)0 - 0 as &6 — 0, then xﬁ(é) —ATyasd—0.
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