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1. INTRODUCTION

In [3] Lardy used spectral techniques to prove the convergence of a series
representation of the Moore–Penrose inverse of a closed linear operator A
that is defined on a dense subspace DðAÞ of a Hilbert space H1 and takes
values in a Hilbert space H2: (In this discussion the symbols h�; �i; jj � jj; and I
are used indiscriminately to denote the inner product, norm, and identity
operator, respectively, in either Hilbert space.) The Moore–Penrose inverse
of A is the operator Aw defined on the dense subspace DðAwÞ ¼ RðAÞ þ RðAÞ?

of H2 which maps y 2 DðAwÞ to the unique vector x ¼ Awy 2 DðAÞ \ N ðAÞ?

satisfying Ax ¼ Py; where P is the orthogonal projector of H2 onto RðAÞ; the
closure of the range of A (N ðAÞ is the nullspace of A). In particular, DðAwÞ
consists of those y 2 H2 for which Py 2 RðAÞ: The vectors x 2 DðAÞ satisfying
Ax ¼ Py are called least-squares solutions of the equation Az ¼ y since any
such least-squares solution x satisfies jjAx� yjj4jjAz� yjj for any z 2 DðAÞ:
Therefore, y 2 DðAwÞ if and only if the equation Az ¼ y has least-squares
solutions and Awy is that least-squares solution having smallest norm. It is
well known that Aw : DðAwÞ ! H1 is itself a closed densely defined linear
operator which is bounded if and only if RðAÞ is closed.
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Lardy’s series representation of the Moore–Penrose inverse makes use of
the remarkable theorem of von Neumann (see [4]) which asserts that the
linear operators

#AA ¼ ðI þ AAnÞ�1; $AA ¼ ðI þ AnAÞ�1; An #AA and A $AA

are each bounded linear operators that are defined everywhere on the
appropriate Hilbert spaces. Lardy’s theorem asserts that

Awy ¼
X1

k¼1

An #AA
k
y ð1Þ

for each y 2 DðAwÞ: As an alternative to his spectral theory approach, we
apply Dykstra’s algorithm (see [1, p. 207]) to prove the convergence of this
representation of the Moore–Penrose inverse. Our line of argument is this:
the series representation is converted into an iterative method; the iterative
method is characterized as a multi-stage optimization procedure; and the
optimization procedure is interpreted as alternately projecting onto two
closed affine subsets of a product Hilbert space. The validity of
representation (1) is then an immediate consequence of the convergence of
Dykstra’s algorithm.

2. AN ITERATIVE METHOD

We begin by proving a simple identity that relates the bounded operators
An #AA; #AA and $AA (see also [2, Lemma 2.2]).

Lemma. ðAn #AAÞ #AA ¼ $AAðAn #AAÞ:

Proof. Note the operators indicated in the statement of the lemma are
defined everywhere. Given y 2 H2; let z ¼ An #AA #AAy; and note that z 2 DðAÞ
since Rð #AAÞ � DðAAnÞ: We then have

Az ¼ ð�I þ I þ AAnÞ #AA #AAy ¼ � #AA #AAy þ #AAy

and hence, since the right-hand side is in DðAAnÞ � DðAnÞ; Az 2 DðAnÞ; and
further

ðI þ AnAÞz ¼ An #AA #AAy � An #AA #AAy þ An #AAy:

Therefore, z ¼ $AAAn #AAy: ]
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Let x0 ¼ 0 and xn ¼
Pn

k¼1 A
n #AA

k
y: Then, by the lemma,

xnþ1 ¼ An #AAy þ
Xn

k¼1

An #AA #AA
k
y ¼ An #AAy þ $AAxn ð2Þ

and hence the partial sums of the series representation (1) satisfy iterative
relation (2).

The iterate xnþ1 is characterized as follows:

Proposition 1. Let x0 ¼ 0: Then xnþ1 is the unique solution z 2 DðAÞ of

the equation

AnðAz� yÞ þ z ¼ xn; n ¼ 0; 1; 2; . . . :

Proof. Since Rð $AAÞ � DðAnAÞ and Rð #AAÞ � DðAAnÞ; we see that

xnþ1 ¼ An #AAy þ $AAxn 2 DðAÞ:

Also,

Axnþ1 ¼ AAn #AAy þ A $AAxn ¼ � #AAy þ y þ A $AAxn:

Therefore,

Axnþ1 � y ¼ � #AAy þ A $AAxn 2 DðAnÞ

and

AnðAxnþ1 � yÞ ¼ �An #AAy þ AnA $AAxn ¼ �An #AAy � $AAxn þ xn ¼ �xnþ1 þ xn;

that is,

AnðAxnþ1 � yÞ þ xnþ1 ¼ xn:

If z1; z2 2 DðAÞ satisfy the equation of the proposition, then w ¼ z1 � z2

satisfies AnAwþ w ¼ 0 and hence w ¼ 0 since ðI þ AnAÞ is invertible. ]

3. MULTI-STAGE OPTIMIZATION

The iterative process of the previous section may be viewed as a multi-
stage optimization procedure in the product Hilbert space H ¼ H1 � H2

(endowed with the usual product norm and inner product). Since A is a
closed linear operator, the graph

G ¼ fðx;AxÞ: x 2 DðAÞg
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is a closed subspace of H: Given a vector ðxn; yÞ 2 H; let ðxnþ1;Axnþ1Þ be the
metric projection (in H) of ðxn; yÞ onto G: The vector xnþ1 is then the unique
vector z in DðAÞ that minimizes the quantity

jjz� xnjj
2 þ jjAz� yjj2

and hence

hAxnþ1 � y;Aui ¼ hxn � xnþ1; ui

for all u 2 DðAÞ: Therefore, Axnþ1 � y 2 DðAnÞ and

AnðAxnþ1 � yÞ ¼ xn � xnþ1: ð3Þ

The result of the previous section therefore characterizes the iterates
which form the partial sums of the series representation (1) as the unique
solutions of the multi-stage optimization process

xnþ1 ¼ argminfjjAz� yjj2 þ jjz� xnjj
2: z 2 DðAÞg: ð4Þ

4. DYKSTRA’S ALGORITHM APPLIED

Let K1 ¼ H1 � fPyg; where P is the orthogonal projector of H2 onto RðAÞ;
and let K2 ¼ G; the graph of A: Then K1 and K2 are closed affine subsets of
H and K1 \ K2=|; if and only if there is a x 2 DðAÞ with Ax ¼ Py; that is, if
and only if y 2 DðAwÞ: To put it another way,

K1 \ K2 ¼ Ly � fPyg;

where Ly is the set of least-squares solutions of the equation Az ¼ y:

Proposition 2. If y 2 DðAwÞ; then xn ! Awy; as n ! 1; where fxng is

defined by (4) (equivalently (3) or (2)).

Proof. Let Pi be the metric projection of H onto Ki; i ¼ 1; 2: Note that
since

jjAz� yjj ¼ jjAz� Pyjj;

P2ðu; vÞ ¼ P2ðu; PvÞ for any ðu; vÞ 2 H: The variational characterization (4) of
x1 gives

ðx1;Ax1Þ ¼ P2ð0; yÞ ¼ P2ð0; PyÞ ¼ P2P1ð0; yÞ:
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Also, P1ðx1;Ax1Þ ¼ ðx1; PyÞ and hence,

P2P1ðx1;Ax1Þ ¼ P2ðx1; PyÞ ¼ P2ðx1; yÞ ¼ ðx2;Ax2Þ

and, in general,

ðxn;AxnÞ ¼ ðP2P1Þ
nð0; yÞ ð5Þ

and hence, by Dykstra’s theorem ([1, p. 216]),

ðxn;AxnÞ ! PK1\K2
ð0; yÞ as n ! 1;

where PK1\K2
is the metric projector of H onto Ly � fPyg: In particular,

xn ! x where x is the least-squares solution nearest to 0: In other words,
x ¼ Awy; the least-squares solution of smallest norm. ]

Representation (1) of the Moore–Penrose inverse requires that iterative
method (2) starts at x0 ¼ 0: However, iterative method (2) is well-defined for
an arbitrary initial approximation x0: In the case of an arbitrary x0; process
(5) becomes

ðxn;AxnÞ ¼ ðP2P1Þ
nðx0; yÞ; n ¼ 1; 2; 3; . . . :

As above, Dykstra’s result assures that xn converges to the least-squares
solution x which is nearest to the initial approximation x0: A priori
information on the desired least-squares solution, in the form of x0; may
therefore be allowed to influence the particular least-squares solution to
which the Dykstra algorithm converges.

The formulation of iterative method (2) in terms of Dykstra’s algor-
ithm in the product space H also provides a justification of the regularity

(in the sense of Tikhonov and Arsenin [5]) of the method. Suppose
that, instead of the exact data y 2 DðAwÞ; only an approximation
yd 2 H2 is available satisfying jjy � ydjj4d: Suppose xdn is defined by
(2) using yd instead of y (and xd0 ¼ x0). Also, let Kd

1 ¼ H1 � fPydg
where, as before, P is the orthogonal projector of H2 onto RðAÞ: We then
have

ðxdn;Ax
d
nÞ ¼ ðP2P d

1 Þðx
d
n�1;Ax

d
n�1Þ ¼ ðP2P d

1 Þ
nðx0; ydÞ;

where P d
1 is the metric projector of H onto Kd

1 : Finally, let j � j be the norm
on H; that is,

jðu; vÞj2 ¼ jjujj2 þ jjvjj2 for ðu; vÞ 2 H:
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One then has

jjxdn � xnjj
2 4jðxdn;Ax

d
nÞ � ðxn;AxnÞj

2

¼ jP2fP d
1 ðx

d
n�1;Ax

d
n�1Þ � P1ðxn�1;Axn�1Þgj2

4jP d
1 ðx

d
n�1;Ax

d
n�1Þ � P1ðxn�1;Axn�1Þj

2

¼ jðxdn�1; Py
dÞ � ðxn�1; PyÞj2

4jjxdn�1 � xn�1jj2 þ d2:

Since xd0 ¼ x0; it follows that jjxdn � xnjj4
ffiffiffi
n

p
d: Combining this with the

previous proposition we arrive at:

Proposition 3. Suppose y 2 DðAwÞ and jjy � ydjj4d: If n ¼ nðdÞ satisfies

nðdÞ ! 1 and
ffiffiffiffiffiffiffiffiffi
nðdÞ

p
d ! 0 as d ! 0; then xdnðdÞ ! Awy as d ! 0:
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